티스토리 뷰
This means that the approximation result f(x) should be between
a) ρOPT <= f(x) <= OPT, when ρ < 1
b) OPT <= f(x) <= ρOPT, when ρ > 1
So, a) occurs when it's a maximization problem, and b) occurs when it's a minimization problem.
For example of a) when ρ=0.5, and you want to find a 0.5-approximation algorithm for a NP maximization problem of a graph G=(V,E)
when, OPT = |E|
you need to find a approximation algorithm f(x) which finds at least
0.5|E| <= f(x) <= |E|
(for 0.5-approximation in a graph, randomized algorithm almost fits to the approximation with factor 0.5)
so, if ρ becomes closer to 1, it becomes a tighter approximation algorithm.
Fin.
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
TAG
- ny-school
- 뽐뿌
- gae
- Javascript
- lecture
- Android
- 강좌
- 삼식이
- Writing
- java
- 서울
- GX-10
- 안드로이드
- google app engine
- 탐론 17-50
- HTML5
- TIP
- 사진
- 안드로이드 앱 개발 기초
- 속깊은 자바스크립트 강좌
- HTML5 튜토리얼
- 샷
- gre
- c++
- php
- 자바스크립트
- mini project
- 팁
- Python
- K100D
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
글 보관함